


Overview

Project Summary

● Name: Alphax
● Platform: EVM-compatible chains
● Language: Solidity
● Audit Range: See Appendix - 1

Project Dashboard
Application Summary

Name Alphax

Version v2

Type Solidity

Dates Nov 22 2024

Logs Nov 22 2024; Nov 22 2024

Vulnerability Summary

Total High-Severity issues 0

Total Medium-Severity issues 1

Total Low-Severity issues 1

Total informational issues 1

Total 3

Contact
E-mail: support@salusec.io

1



Risk Level Description

High Risk

The issue puts a large number of users’ sensitive

information at risk, or is reasonably likely to lead to

catastrophic impact for clients’ reputations or serious

financial implications for clients and users.

Medium Risk

The issue puts a subset of users’ sensitive

information at risk, would be detrimental to the client’s

reputation if exploited, or is reasonably likely to lead

to a moderate financial impact.

Low Risk

The risk is relatively small and could not be exploited

on a recurring basis, or is a risk that the client has

indicated is low impact in view of the client’s business

circumstances.

Informational
The issue does not pose an immediate risk, but is

relevant to security best practices or defense in

depth.

2



Content

Introduction 4
1.1 About SALUS 4
1.2 Audit Breakdown 4
1.3 Disclaimer 4

Findings 5
2.1 Summary of Findings 5
2.2 Notable Findings 6

1. Centralization risk 6
2. Users can forge userId to perform check-in and predict 7

2.3 Informational Findings 8
3. Use of floating pragma 8

Appendix 9
Appendix 1 - Files in Scope 9

3



Introduction

1.1 About SALUS
At Salus Security, we are in the business of trust.

We are dedicated to tackling the toughest security challenges facing the industry today. By
building foundational trust in technology and infrastructure through security, we help clients
to lead their respective industries and unlock their full Web3 potential.

Our team of security experts employ industry-leading proof-of-concept (PoC) methodology
for demonstrating smart contract vulnerabilities, coupled with advanced red teaming
capabilities and a stereoscopic vulnerability detection service, to deliver comprehensive
security assessments that allow clients to stay ahead of the curve.

In addition to smart contract audits and red teaming, our Rapid Detection Service for smart
contracts aims to make security accessible to all. This high calibre, yet cost-efficient, security
tool has been designed to support a wide range of business needs including investment due
diligence, security and code quality assessments, and code optimisation.

We are reachable on Telegram (https://t.me/salusec), Twitter (https://twitter.com/salus_sec),
or Email (support@salusec.io).

1.2 Audit Breakdown
The objective was to evaluate the repository for security-related issues, code quality, and
adherence to specifications and best practices. Possible issues we looked for included (but
are not limited to):

● Risky external calls
● Integer overflow/underflow
● Transaction-ordering dependence
● Timestamp dependence
● Access control
● Call stack limits and mishandled exceptions
● Number rounding errors
● Centralization of power
● Logical oversights and denial of service
● Business logic specification
● Code clones, functionality duplication

1.3 Disclaimer
Note that this security audit is not designed to replace functional tests required before any
software release and does not give any warranties on finding all possible security issues with
the given smart contract(s) or blockchain software, i.e., the evaluation result does not
guarantee the nonexistence of any further findings of security issues.

4



Findings
2.1 Summary of Findings

ID Title Severity Category Status

1 Centralization risk Medium Centralization Mitigated

2 Users can forge userId to perform check-in and
predict

Low Business Logic Mitigated

3 Use of floating pragma Informational Configuration Acknowledged

5



2.2 Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

1. Centralization risk

Severity: Medium Category: Centralization

Target:
- AIFund.sol

Description

The contract has multiple centralized logic.

● AIFund.sol includes an Owner privileged role, which has the authority to withdraw
BTC and USDT.

● The actual claim logic is off-chain, and the contract itself does not directly distribute
funds to users. This means that all AlFund assets are entirely under the control of
the Owner role.

If the privileged accounts are plain EOA accounts, this can be worrisome and pose a risk to
the other users.

Recommendation

We recommend transferring privileged accounts to multi-sig accounts with timelock
governors for enhanced security. This ensures that no single person has full control over the
accounts and that any changes must be authorized by multiple parties.

Status

The team stated that they would transfer the owner to a multi-signature account immediately
after deployment.

6



2. Users can forge userId to perform check-in and predict

Severity: Low Category: Business Logic

Target:
- Alphax.sol

Description

In the `checkin()` and `signalPredict()` functions, data is merely recorded, while off-chain
systems monitor events to execute external logic. However, the info parameter in the
events they trigger, including `userId`, is not validated.

This means the `userId` may not actually correspond to the intended user.

Recommendation

It is recommended to validate the `userId` off-chain.

Status

This issue has been mitigated by the team. The team will validate the `userId` off-chain.

7



2.3 Informational Findings

3. Use of floating pragma

Severity: Informational Category: Configuration

Target:
- AIFund.sol
- Alphax.sol

Description

pragma solidity ^0.8.13;
pragma solidity ^0.8.0;

The contracts use a floating compiler version.

Using a floating pragma <version> statement is discouraged, as code may compile to
different bytecodes with different compiler versions. Use a locked pragma statement to get a
deterministic bytecode. Also use the latest Solidity version to get all the compiler features,
bug fixes and optimizations.

Recommendation

It is recommended to use a locked Solidity version throughout the project. It is also
recommended to use the most stable and up-to-date version.

Status

This issue has been acknowledged by the team.

8



Appendix
Appendix 1 - Files in Scope
This audit covered the following files:

File SHA-1 hash

AIFund.sol 74eaac3b3a15045adf7cad586190ce3b40206fe8

Alphax.sol 5ad920362854f3ca7f8531452394e100b3a5b618

9


